

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

BREED ANCESTRY

Lagotto Romagnolo : 100.0%

GENETIC STATS

Predicted adult weight: **29 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-13504386 Swab number: 31210152206146

DNA Test Report

Fun Fact

Lagotto Romagnolos were originally bred as water retrievers, which is evident in their name: "lagotto" means little lake in Italian. Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

LAGOTTO ROMAGNOLO

Lagotto Romagnolos are an Italian breed of dog from the Romagna region of Italy. Sporting curly hair and charming faces, they were originally bred as hunting dogs during the Medieval Period; however, today they are mostly kept as pets and as a different kind of hunting dog-Lagotto Romagnolos are expert truffle dogs. Their wonderful sense of smell makes them a great candidate for finding and unearthing truffles, rare and expensive mushrooms that are considered culinary delicacies. Lagotto Romagnolos are very much "working dogs" and likely won't be satisfied if they spend most of their time indoors. Because of this, they do best with families that are active and spend a lot of time outside. If interested in truffle hunting, prospective owners can purchase Lagotto Romagnolos that were specially trained to find truffles. If kept simply as pets, however, it is very important that Lagotto Romagnolos are given enough time outside and adequate exercise, or they can become bored and subsequently destructive. Due to this, they aren't ideal apartment dogs-though they can adapt if need be-and would generally do better in a suburban or rural environment. Mental exercise is just as important as physical exercise; Lagotto Romagnolos are very intelligent and can get bored easily. Enrolling Lagotto Romagnolos in a dog sport or obedience training is a great way to keep them occupied. Lagotto Romagnolos are very loving and loyal dogs and are a great choice for families with children and other pets. They get along well with other dogs and can do very well with cats if socialized with them from a young age. They have sweet demeanors and are relatively easy to train with proper instruction. Another great thing about Lagotto Romagnolos is that they shed very little, and they are as close to hypoallergenic as a dog can be (though no dog is completely safe for people who are severely allergic to dogs). They make great companions for families that are sensitive to allergy issues and who are looking to add an active and sweet dog to their home.

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

MATERNAL LINE

Through Fiume's The Greatest Show's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1b

This female lineage was very likely one of the original lineages in the wolves that were first domesticated into dogs in Central Asia about 15,000 years ago. Since then, the lineage has been very successful and travelled the globe! Dogs from this group are found in ancient Bronze Age fossils in the Middle East and southern Europe. By the end of the Bronze Age, it became exceedingly common in Europe. These dogs later became many of the dogs that started some of today's most popular breeds, like German Shepherds, Pugs, Whippets, English Sheepdogs and Miniature Schnauzers. During the period of European colonization, the lineage became even more widespread as European dogs followed their owners to farflung places like South America and Oceania. It's now found in many popular breeds as well as village dogs across the world!

HAPLOTYPE: A361/409/611

Part of the A1b haplogroup, this haplotype occurs most frequently in German Shepherd Dogs, Poodles, and Shiloh Shepherds.

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

PATERNAL LINE

Through Fiume's The Greatest Show's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on **Registration: Canadian Kennel Club**

HAPLOTYPE: H1a.42

Part of the A1a haplogroup, the H1a.42 haplotype occurs most commonly in Airedale Terriers, Lagotto Romagnolos and American Pit Bull Terriers.

(CKC) CK-JC4061692

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

RESULT

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the E^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of E^m, dogs with the E^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both E^m and E variants, dogs with the E^a or E^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the E^g, E^a, or E^h variants (example: E^gE^a) is also expected to express the grizzle phenotype.

K Locus (CBD103)

The K Locus **K**^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the **K**^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one **K**^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the **k**^y**k**^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as **K**^B**k**^y may be brindle rather than black or brown.

No dark hairs anywhere (ee)

Not expressed (K^BK^B)

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any pigmented hair likely yellow or tan (Intermediate Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k^yk^y** at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Not expressed (a^ta^t)

Not expressed (DD)

Registration:

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Cocoa (HPS3)

Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin.No co alleles, notDogs with the Nco genotype will produce black pigment, but can pass the co allele on to their puppies.expressed (NN)Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brownthan dogs that have the Bb or BB genotypes at the B locus.

B Locus (TYRP1)

Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Likely brown colored nose/feet (bb)

Saddle Tan (RALY)

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

Not expressed (II)

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely solid colored, but may have small amounts of white (Ssp)

Registration:

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely roan patterned (Rr)

No merle alleles (mm)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely furnished (mustache, beard, and/or eyebrows) (FF)

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are
heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus
and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2
(the furnishings gene) tend to be low shedders regardless of their genotype at this gene.Likely li
(CT)

Likely light shedding (CT)

RESULT

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Registration:

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

RESULT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely not albino (NN)

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Likely medium or long muzzle (CC)

RESULT

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Likely normal-length tail (CC)

Unlikely to have hind dew claws (CC)

Registration:

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Less likely to have blue eyes (NN)

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Smaller (II)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Intermediate (GA)
The A allele is associated with smaller body size.		internediate (GA)
Body Size (STC2)		Intermediate (TA)
The A allele is associated with smaller body size.		internediate (TA)
Body Size (GHR - E191K)		Larger (GG)
The A allele is associated with smaller body size.		20.90. (00)
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size.		

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

RESULT

TRAITS: PERFORMANCE

TRAIT

Altitude Adaptation (EPAS1)

Normal altitude This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those tolerance (GG) found at high elevations. Dogs with at least one A allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Appetite (POMC)

This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more Normal food likely to have high food motivation, which can cause them to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.

motivation (NN)

Registration:

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

HEALTH REPORT

How to interpret Fiume's The Greatest Show's genetic health results:

If Fiume's The Greatest Show inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Fiume's The Greatest Show for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 215 genetic health risks we analyzed, we found 3 results that you should learn about.

Notable results (3)

ALT Activity

Juvenile Epilepsy

Progressive Retinal Atrophy, prcd

Clear results

Breed-relevant (2)

Other (210)

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Fiume's The Greatest Show, and may influence his chances of developing certain health conditions.

Juvenile Epilepsy (LGI2)	Notable
Lagotto Storage Disease (ATG4D)	Clear
Urate Kidney & Bladder Stones (SLC2A9)	Clear

Registration: Canadian Kennel Club (CKC) CK-JC4061692

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Fiume's The Greatest Show. Review any increased risk or notable results to understand his potential risk and recommendations.

ALT Activity (GPT)	Notable
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Notable
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Adult-Onset Neuronal Ceroid Lipofuscinosis, NCL A, NCL 12 (ATP13A2, Tibetan Terrier Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear

Registration: Canadian Kennel Club (CKC) CK-

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
Canine Multifocal Retinopathy, cmr3 (BES Lapponian Herder Variant)	ST1 Exon 10 Deletion, Finnish and Swedish Lapphur	nd, Clear
Canine Multiple System Degeneration (SI	ERAC1 Exon 4, Chinese Crested Variant)	Clear
Oranine Multiple System Degeneration (SI	ERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality ((ARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)		Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eurasier V	ariant)	Clear
Chondrodystrophy (ITGA10, Norwegian El	khound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20,	Nova Scotia Duck Tolling Retriever Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 8,	Beagle Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 53	B, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)		Clear
Omplement 3 Deficiency, C3 Deficiency	(C3)	Clear
Congenital Hypothyroidism (TPO, Rat, Toy	r, Hairless Terrier Variant)	Clear
🔗 Congenital Hypothyroidism (TPO, Tenterfi	eld Terrier Variant)	Clear
Congenital Macrothrombocytopenia (TUE	B1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)	Clear
Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear

Registration: Canadian Kennel Club (CKC) CK-JC4061692

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
Ocongenital Myasthenic Syndrome, CMS	CHRNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness (L	RIT3, Beagle Variant)	Clear
Ongenital Stationary Night Blindness (F	RPE65, Briard Variant)	Clear
🔗 Craniomandibular Osteopathy, CMO (SLC	37A2)	Clear
🔗 Cystinuria Type I-A (SLC3A1, Newfoundla	nd Variant)	Clear
Orstinuria Type II-A (SLC3A1, Australian G	Cattle Dog Variant)	Clear
Orstinuria Type II-B (SLC7A9, Miniature F	Pinscher Variant)	Clear
Day Blindness (CNGA3 Exon 7, German S	hepherd Variant)	Clear
Day Blindness (CNGA3 Exon 7, Labrador F	Retriever Variant)	Clear
Oay Blindness (CNGB3 Exon 6, German S	horthaired Pointer Variant)	Clear
Deafness and Vestibular Syndrome of Do	bermans, DVDob, DINGS (MYO7A)	Clear
O Degenerative Myelopathy, DM (SOD1A)		Clear
Oemyelinating Polyneuropathy (SBF2/M	TRM13)	Clear
Diffuse Cystic Renal Dysplasia and Hepa	tic Fibrosis (INPP5E Intron 9, Norwich Terrier Varia	ant) Clear
Dilated Cardiomyopathy, DCM1 (PDK4, Do	berman Pinscher Variant 1)	Clear
Dilated Cardiomyopathy, DCM2 (TTN, Dol	perman Pinscher Variant 2)	Clear
Ory Eye Curly Coat Syndrome (FAM83H E	xon 5)	Clear
Oystrophic Epidermolysis Bullosa (COL74	A1, Central Asian Shepherd Dog Variant)	Clear

Registration: Canadian Kennel Club (CKC) CK-JC4061692

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
Oystrophic Epidermolysis Bul	llosa (COL7A1, Golden Retriever Variant)	Clear
🔗 Early Onset Cerebellar Ataxia	(SEL1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Dot	berman Pinscher Variant)	Clear
🔗 Enamel Hypoplasia (ENAM De	eletion, Italian Greyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SN	NP, Parson Russell Terrier Variant)	Clear
Spisodic Falling Syndrome (B	CAN)	Clear
Service - Induced Collapse, E	EIC (DNM1)	Clear
Sector VII Deficiency (F7 Exor	n 5)	Clear
Samilial Nephropathy (COL4A	4 Exon 3, Cocker Spaniel Variant)	Clear
Setal-Onset Neonatal Neuroa	xonal Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
Glanzmann's Thrombasthenia	a Type I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
Glanzmann's Thrombasthenia	a Type I (ITGA2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy,	Krabbe disease (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Ty	pe IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Ty	pe IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
 Glycogen storage disease Typ and English Springer Spaniel 	pe VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKN Variant)	1, Whippet Clear
Glycogen storage disease Typ Wachtelhund Variant)	pe VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKN	A, Clear
GM1 Gangliosidosis (GLB1 Exe	on 2, Portuguese Water Dog Variant)	Clear
Registration: Canadian Kennel Club (CKC) C	K- Kembark	

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu	Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Alaskan H	usky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanese Chin Va	ariant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)		Clear
Golden Retriever Progressive Retinal Atrophy	1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atrophy	2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glaucoma, Pectinate Li	gament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German Shepherd	Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shepherd V	'ariant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)		Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
Hemophilia B (F9 Exon 7, Rhodesian Ridgeba	ck Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration (F	RAB24, Old English Sheepdog and Gordon Sett	er Variant) Clear
Hereditary Cataracts (HSF4 Exon 9, Australian	n Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM83G,	Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG1, Ro	ttweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2 Int	ron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SUV39	0H2)	Clear

Registration: Canadian Kennel Club (CKC) CK-

Rembark

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
Hereditary Vitamin D-Resistant Rickets (VDR)		Clear
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, Weiman	raner Variant)	Clear
🔗 Hypophosphatasia (ALPL Exon 9, Karelian Bea	ar Dog Variant)	Clear
🔗 Ichthyosis (NIPAL4, American Bulldog Variant)	Clear
Ichthyosis (SLC27A4, Great Dane Variant)		Clear
Ichthyosis, Epidermolytic Hyperkeratosis (KR	T10, Terrier Variant)	Clear
O Ichthyosis, ICH1 (PNPLA1, Golden Retriever Va	ariant)	Clear
Inflammatory Myopathy (SLC25A12)		Clear
Inherited Myopathy of Great Danes (BIN1)		Clear
Inherited Selected Cobalamin Malabsorption	with Proteinuria (CUBN, Komondor Variant) Clear
Intervertebral Disc Disease (Type I) (FGF4 ret	rogene - CFA12)	Clear
Juvenile Laryngeal Paralysis and Polyneuropa	thy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
C-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH	Staffordshire Bull Terrier Variant)	Clear
Late Onset Spinocerebellar Ataxia (CAPN1)		Clear
Late-Onset Neuronal Ceroid Lipofuscinosis, N	CL 12 (ATP13A2, Australian Cattle Dog Vari	ant) Clear
Leonberger Polyneuropathy 1 (LPN1, ARHGEF	10)	Clear

Registration: Canadian Kennel Club (CKC) CK-

Rembark

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
Leonberger Polyneuropathy 2 (GJA9)		Clear
Lethal Acrodermatitis, LAD (MKLN1)		Clear
Ligneous Membranitis, LM (PLG)		Clear
⊘ Limb Girdle Muscular Dystrophy (SG0	CD, Boston Terrier Variant)	Clear
Long QT Syndrome (KCNQ1)		Clear
Lundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CH	IST6)	Clear
🔗 Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft C	coated Wheaten Terrier Variant)	Clear
 Mucopolysaccharidosis Type IIIA, Sar Variant) 	nfilippo Syndrome Type A, MPS IIIA (SGSH Exor	n 6, Dachshund Clear
Mucopolysaccharidosis Type IIIA, Sar Huntaway Variant)	nfilippo Syndrome Type A, MPS IIIA (SGSH Exor	n 6, New Zealand Clear
Mucopolysaccharidosis Type VII, Sly	Syndrome, MPS VII (GUSB Exon 3, German She	epherd Variant) Clear
Mucopolysaccharidosis Type VII, Sly	Syndrome, MPS VII (GUSB Exon 5, Terrier Brasi	ileiro Variant) Clear
Multiple Drug Sensitivity (ABCB1)		Clear
Muscular Dystrophy (DMD, Cavalier K	ing Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, Golden Re	etriever Variant)	Clear
Registration: Canadian Kennel Club (CKC) CK-		

Registration: Canadian Kennel Club (CKC) CK-JC4061692

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
Musladin-Lueke Syndrome, MLS (ADAMTS	SL2)	Clear
🧭 Myasthenia Gravis-Like Syndrome (CHRN	E, Heideterrier Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 23, Aus	tralian Cattle Dog Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 7, Minia	ture Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund \	/ariant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman I	Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Re	etriever Variant)	Clear
Neonatal Cerebellar Cortical Degeneration	n (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Seizures, I	NEWS (ATF2)	Clear
Neonatal Interstitial Lung Disease (LAMPS)	3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rotty	weiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Sp	anish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (F	PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10) (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (*	TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Varia	ant) Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear

Registration: Canadian Kennel Club (CKC) CK-

Rembark

DNA Test Report	Test Date: May 22nd, 2021 embk.m	e/fiumesthegreatestshow
OTHER RESULTS		
Neuronal Ceroid Lipofuscinosis	7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
O Neuronal Ceroid Lipofuscinosis	8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
O Neuronal Ceroid Lipofuscinosis	8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Variant) 	, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terri	er Clear
Oculocutaneous Albinism, OCA	(SLC45A2, Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL	9A2, Samoyed Variant)	Clear
Osteochondrodysplasia (SLC13,	A1, Poodle Variant)	Clear
Osteogenesis Imperfecta (COL1	IA2, Beagle Variant)	Clear
Osteogenesis Imperfecta (SERF	PINH1, Dachshund Variant)	Clear
Osteogenesis Imperfecta (COL1	IA1, Golden Retriever Variant)	Clear
P2Y12 Receptor Platelet Disorde	er (P2Y12)	Clear
Paroxysmal Dyskinesia, PxD (Pl	GN)	Clear
Persistent Mullerian Duct Syndr	rome, PMDS (AMHR2)	Clear
Platelet Factor X Receptor Defic	ciency, Scott Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD	(PKD1)	Clear
🔗 Pompe's Disease (GAA, Finnish	and Swedish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1	Exon 8)	Clear
Primary Ciliary Dyskinesia, PCD	(NME5, Alaskan Malamute Variant)	Clear

Registration: Canadian Kennel Club (CKC) CK-

Rembark

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
Primary Ciliary Dyskinesia, PC	CD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT))	Clear
Primary Lens Luxation (ADAM)	1TS17)	Clear
Primary Open Angle Glaucom	na (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucom	na (ADAMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucom	na (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucom Variant) 	na and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Sha	ar-Pei Clear
Progressive Retinal Atrophy ((SAG)	Clear
Progressive Retinal Atrophy, 0	CNGA (CNGA1 Exon 9)	Clear
Progressive Retinal Atrophy, o	crd1 (PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, o	crd4/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, F	PRA1 (CNGB1)	Clear
Progressive Retinal Atrophy, F	PRA3 (FAM161A)	Clear
Progressive Retinal Atrophy, r	rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, r	rcd3 (PDE6A)	Clear
Protein Losing Nephropathy, F	PLN (NPHS1)	Clear
Pyruvate Dehydrogenase Defi	ficiency (PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (F	PKLR Exon 5, Basenji Variant)	Clear
Registration: Canadian Kennel Club (CKC) Cl	X- Cembark	

Registration: Canadian Kennel Club (CKC) CK-

Rembark

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
Pyruvate Kinase Deficiency ((PKLR Exon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency ((PKLR Exon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency ((PKLR Exon 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency ((PKLR Exon 7, Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Renal Cystadenocarcinoma	and Nodular Dermatofibrosis (FLCN Exon 7)	Clear
Sensory Neuropathy (FAM13	4B, Border Collie Variant)	Clear
Severe Combined Immunode	eficiency, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunode	eficiency, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (P	PLP1, English Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory D	Disease, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (Co	OL11A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (PKF	P1, Chesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia with	Myokymia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with C	Cerebellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with C	Cerebellar Ataxia 2 (ATP1B2)	Clear
O Thrombopathia (RASGRP1 E	xon 5, American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 E	xon 5, Basset Hound Variant)	Clear

Registration: Canadian Kennel Club (CKC) CK-

Rembark

DNA Test Report	Test Date: May 22nd, 2021	embk.me/fiumesthegreatestshow
OTHER RESULTS		
O Thrombopathia (RASGRP1 Ex	con 8, Landseer Variant)	Clear
Trapped Neutrophil Syndrome	e, TNS (VPS13B)	Clear
O Ullrich-like Congenital Muscu	ular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
O Unilateral Deafness and Vest	ibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
⊘ Von Willebrand Disease Type	9 I, Type I ∨WD (VWF)	Clear
🔗 Von Willebrand Disease Type	e II, Type II vWD (VWF, Pointer Variant)	Clear
Over Willebrand Disease Type	e III, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
🔗 Von Willebrand Disease Type	e III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje V	/ariant) Clear
🔗 Von Willebrand Disease Type	e III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephrop	oathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopat	hy (MTM1, Labrador Retriever Variant)	Clear
⊘ X-Linked Progressive Retinal	Atrophy 1, XL-PRA1 (RPGR)	Clear
⊘ X-linked Severe Combined Im	nmunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	c) Clear
⊘ X-linked Severe Combined Im	nmunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear

Registration: Canadian Kennel Club (CKC) CK-

Rembark

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

HEALTH REPORT

Notable result

ALT Activity

Fiume's The Greatest Show inherited both copies of the variant we tested for Alanine Aminotransferase Activity

Why is this important to your vet?

Fiume's The Greatest Show has two copies of a variant in the GPT gene and is likely to have a lower than average baseline ALT activity. ALT is a commonly used measure of liver health on routine veterinary blood chemistry panels. As such, your veterinarian may want to watch for changes in Fiume's The Greatest Show's ALT activity above their current, healthy, ALT activity. As an increase above Fiume's The Greatest Show's baseline ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

HEALTH REPORT

Notable result

Juvenile Epilepsy

Fiume's The Greatest Show inherited one copy of the variant we tested for Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy

What does this result mean?

This variant should not impact Fiume's The Greatest Show's health. This variant is inherited in an autosomal recessive manner, meaning that a dog needs two copies of the variant to show signs of this condition. Fiume's The Greatest Show is unlikely to develop this condition due to this variant because he only has one copy of the variant.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of his offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

What is Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy?

This is a spontaneous form of epilepsy (a seizure disorder) that occurs in young dogs and resolves on its own.

When signs & symptoms develop in affected dogs

Signs develop in puppies.

How vets diagnose this condition

Unless a genetic basis is suspected due to the age, breed, or history of the dog, diagnostics must be performed to rule out infectious, inflammatory, or neoplastic causes.

How this condition is treated

Treatment for BFJE is usually supportive; dogs typically grow out of the disease and suffer no ill effects later in life.

Actions to take if your dog is affected

• Genetic testing can save your puppy from undergoing many tests to determine the cause of the seizures.

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

HEALTH REPORT

On the second second

Progressive Retinal Atrophy, prcd

Fiume's The Greatest Show inherited one copy of the variant we tested for Progressive Retinal Atrophy, prcd

What does this result mean?

This variant should not impact Fiume's The Greatest Show's health. This variant is inherited in an autosomal recessive manner, meaning that a dog needs two copies of the variant to show signs of this condition. Fiume's The Greatest Show is unlikely to develop this condition due to this variant because he only has one copy of the variant.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of his offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

What is Progressive Retinal Atrophy, prcd?

PRA-prcd is a retinal disease that causes progressive, non-painful vision loss. The retina contains cells, called photoreceptors, that collect information about light and send signals to the brain. There are two types of photoreceptors: rods, for night vision and movement, and cones, for day vision and color. This type of PRA leads to early loss of rod cells, leading to night blindness before day blindness.

When signs & symptoms develop in affected dogs

The age affected dogs will first show signs of visual impairment varies by breed. However, most begin showing clinical signs in early adulthood.

How vets diagnose this condition

Veterinarians use a focused light to examine the pupils. In affected dogs, the pupils will appear more dilated and slower to contract. Your vet may also use a lens to visualize the retina at the back of the eye to look for changes in the optic nerve or blood vessels. You may be referred to a veterinary ophthalmologist for a definitive diagnosis.

How this condition is treated

Currently, there is no definitive treatment for PRA. Supplements, including antioxidants, have been proposed for management of the disease, but have not been scientifically proven effective.

Actions to take if your dog is affected

- Careful monitoring by your veterinarian will be required for the rest of your affected dog's life as secondary complications, including cataracts, can develop.
- With blind dogs, keeping furniture in the same location, making sure they are on a leash in unfamiliar territory, and training them to understand verbal commands are some of the ways to help them at home.

DNA Test Report

Test Date: May 22nd, 2021

embk.me/fiumesthegreatestshow

INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

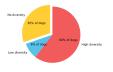
Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

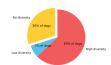
MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.


23%

Year Dary's Col: 23%

RESULT


No Diversity

How common is this amount of diversity in purebreds:

No Diversity

How common is this amount of diversity in purebreds:

